DETERMINATION OF VARIABLE COEFFICIENT OF
HEAT TRANSFER FOR A THIN SEMIINFINITE ROD

Yu. I. Babenko UDC 536,242
The heat transfer in a semiinfinite rod, cooled from the lateral surface according to a time-
dependent law, is investigated. The law of heat transfer is found from the given temperature

and the temperature gradient at the end-face of the rod.
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from given values of the functions #(t) and q(t) it is required to determine the variable heat transfer coef-
ficients y(t). This problem describes, for example, the cooling of a thin semiinfinite rod by a liquid flux
with changing velocity or temperature.
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After the well known substitution 8 = T exp (Sydt), instead of (1) we have
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From here we can obtain the relationship among 4, g, and y (for example, using the method discussed by
us earlier [1, 2]) in the form

¢ g i
o ) 5o )
0 Q

where we have used the fractional differentiation operator
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Let the functions ¢ and g be given in the form of power series of £1/2

#=Namn  g=F 0" (10)

Then the solution can be constructed in the form of the series
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Substituting (10) and (11) into (7) and equating the coefficients of equal powers of £1/2 we successively de-
termine all ¢,,. This is possible under the condition

ay -+ Vithy = 0. (12)

Condition (12) is easy to explain physically. At the initial instant of time the law of cooling y{) must not
depend on the relationships between & and q. Here c, is an arbitrary quantity and the remaining constants
are expressed in terms of ¢ in the following way:
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It is evident that arbitrary constant ¢, occurs in all ¢ only in the form of a factor, so that ¢, = apc,. There-
fore, in-taking the logarithm and in differentiation of (11) ¢, drops out and the final solution has the form
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Example. Let $=aq q = —a(,(':ﬂ:)'i/2 +by. From (13) we get
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Since lim lan_i/anl ~ O(Jn),. the series in (14) dor (15)) converges absolutely for all values of .
> . .

NOTATION

a, a b, c are the coefficients in the power series;

is the temperature;

is the temperature at the end-face of the rod;
is the temperature gradient at the end-face of the rod;
is the coordinate;

is the time;

is the heat-transfer coefficient;

is the auxiliary variable;

is the arbitrary function;

is the index of the power function;

are the summation indices.

BER "o X2 %]

=

LITERATURE CITED

1. Yu. 1. Babenko, Certain Problems Frequently Encountered in the Theory of Nonstationary Combus-
tion, in: Combustion and Explosion [in Russian], Nauka (1972).

2. Yu. I. Babenko, Use of Fractional Derivatives in Problems of Heat Transfer, Proceedings IV All-
Union Conference on TMO, ITMO AN BSSR, Vol. 8, Minsk (1972), p. 541,

510



