DETERMINATION OF VARIABLE COEFFICIENT OF HEAT TRANSFER FOR A THIN SEMIINFINITE ROD

Yu. I. Babenko UDC 536.242

The heat transfer in a semiinfinite rod, cooled from the lateral surface according to a time-dependent law, is investigated. The law of heat transfer is found from the given temperature and the temperature gradient at the end-face of the rod.

In the problem

$$\left[\frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2} + \gamma(t)\right] T = 0, \ 0 \leqslant x < \infty, \ 0 < t < \infty; \tag{1}$$

$$T|_{x=0} = \vartheta(t); \tag{2}$$

$$\frac{\partial T}{\partial x}\Big|_{x=0} = q(t); \tag{3}$$

$$T|_{x=\infty}=0; (4)$$

$$T|_{t=0}=0,$$
 (5)

from given values of the functions $\vartheta(t)$ and q(t) it is required to determine the variable heat transfer coefficients $\gamma(t)$. This problem describes, for example, the cooling of a thin semiinfinite rod by a liquid flux with changing velocity or temperature.

After the well known substitution $\theta = \text{T} \exp(\int_{1}^{t} \gamma dt)$, instead of (1) we have

$$\left(\frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2}\right)\theta = 0. \tag{6}$$

From here we can obtain the relationship among ϑ , q, and γ (for example, using the method discussed by us earlier [1, 2]) in the form

$$q \exp\left(\int_{0}^{t} \gamma dt\right) + \frac{d^{1/2}}{dt^{1/2}} \left[\vartheta \exp\left(\int_{0}^{t} \gamma dt\right)\right] = 0, \tag{7}$$

where we have used the fractional differentiation operator

$$\frac{d^{1/2} f(t)}{dt^{1/2}} = \frac{1}{\sqrt{\pi}} \frac{d}{dt} \int_{0}^{t} \frac{f(\tau) d\tau}{1 \ t - \tau} , \tag{8}$$

$$\frac{d^{1/2} t^{\mu}}{dt^{1/2}} = \frac{\Gamma(\mu + 1)}{\Gamma(\mu + \frac{1}{2})} t^{\mu - \frac{1}{2}}, \quad \mu > -\frac{1}{2}.$$
 (9)

Let the functions ϑ and q be given in the form of power series of $t^{1/2}$

$$\vartheta = \sum_{n=0}^{\infty} a_n t^{n/2}; \qquad q = \sum_{n=0}^{\infty} b_n t^{(n-1)/2}. \tag{10}$$

Then the solution can be constructed in the form of the series

State Institute of Applied Chemistry, Leningrad. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 26, No. 4, pp. 732-734, April, 1974. Original article submitted October 1, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

$$\exp\left(\int_{0}^{t} \gamma dt\right) = \sum_{n=0}^{\infty} c_n t^{n/2}.$$
 (11)

Substituting (10) and (11) into (7) and equating the coefficients of equal powers of $t^{1/2}$ we successively determine all c_n . This is possible under the condition

$$a_0 + \sqrt{\pi}b_0 \stackrel{\text{def}}{=} 0. \tag{12}$$

Condition (12) is easy to explain physically. At the initial instant of time the law of cooling $\gamma(t)$ must not depend on the relationships between ϑ and q. Here c_0 is an arbitrary quantity and the remaining constants are expressed in terms of c_0 in the following way:

$$c_{1} = -\frac{a_{1}\Gamma(3/2) + b_{1}}{a_{0}\Gamma(3/2) + b_{0}} c_{0} = \alpha_{1}c_{0},$$

$$c_{2} = -\frac{\left[a_{1}\Gamma^{-1}(3/2) + b_{1}\right]c_{1} + \left[a_{2}\Gamma^{-1}(3/2) + b_{2}\right]c_{0}}{a_{0}\Gamma^{-1}(3/2) + b_{0}} = \alpha_{2}c_{0},$$
(13)

$$c_n = - \ \frac{\displaystyle \sum_{k=1}^n c_{n-k} \left[\Gamma\left(\frac{n+2}{2}\right) \Gamma^{-1}\left(\frac{n+1}{2}\right) a_k + b_k \right]}{a_0 \Gamma\left(\frac{n+2}{2}\right) \Gamma^{-1}\left(\frac{n+1}{2}\right) + b_0} = \alpha_n c_0.$$

It is evident that arbitrary constant c_0 occurs in all c_n only in the form of a factor, so that $c_n = \alpha_n c_0$. Therefore, in taking the logarithm and in differentiation of (11) c_0 drops out and the final solution has the form

$$\gamma(t) = \left(\sum_{n=1}^{\infty} \frac{n}{2} \alpha_n t^{(n-2)/2}\right) \left(1 + \sum_{n=1}^{\infty} \alpha_n t^{n/2}\right)^{-1}.$$
 (14)

Example. Let $\vartheta = a_0$, $q = -a_0(\pi t)^{-1/2} + b_1$. From (13) we get

$$\alpha_n = -\left(b_1/a_0\right) \left[\Gamma\left(\frac{n+2}{2}\right)\Gamma^{-1}\left(\frac{n+1}{2}\right) - \frac{1}{\sqrt{\pi}}\right]^{-1} \alpha_{n-1}. \tag{15}$$

Since $\lim_{n\to\infty} |\alpha_{n-1}/\alpha_n| \sim O(\sqrt{n})$, the series in (14) (for (15)) converges absolutely for all values of t.

NOTATION

α , a , b , c	are the coefficients in the power series;
T	is the temperature;
g.	is the temperature at the end-face of the rod;
q	is the temperature gradient at the end-face of the rod;
x	is the coordinate;
t	is the time;
γ	is the heat-transfer coefficient;
θ	is the auxiliary variable;
f .	is the arbitrary function;
μ	is the index of the power function;
n, k	are the summation indices.

LITERATURE CITED

- 1. Yu. I. Babenko, Certain Problems Frequently Encountered in the Theory of Nonstationary Combustion, in: Combustion and Explosion [in Russian], Nauka (1972).
- 2. Yu. I. Babenko, Use of Fractional Derivatives in Problems of Heat Transfer, Proceedings IV All-Union Conference on TMO, ITMO AN BSSR, Vol. 8, Minsk (1972), p. 541.